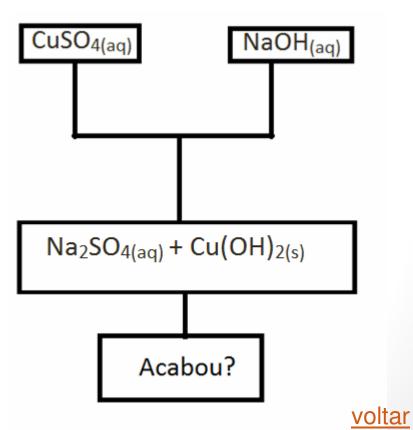
DESCARTE E REUSO DE RESÍDUOS QUÍMICOS GERADOS EM EXPERIMENTOS

Alieth Sirlene Pereira Cavassa, bolsista PIBID, IQ-UNICAMP.

- 1. Realizando um experimento.
- 2. Descarte.
- 3. <u>Reuso</u>.
- 4. <u>Tipos de</u> resíduos.
- 5. Armazenamento.
- 6. Extras.

Realizando um experimento

- Ex. Apostila do aluno, 1ªsérie volume 1. (Material do currículo paulista distribuído pela Secretária de Educação) Parte do experimento sobre evidências de transformações químicas;
- 1. Solução de ácido clorídrico e carbonato de cálcio.
 2HCl(aq) + CaCO_{3(S)} → CaCl_{2(aq)} + H₂O_(I) + CO_{2(q)}
- 2. Solução de cobre e Solução de hidróxido de sódio CuSO_{4(aq)} + 2NaOH_(aq) → Na₂SO_{4(aq)} + Cu(OH)_{2(s)}


Fluxograma

HCl(aq) $CaCO_{3(S)}$ CaCl_{2(aq)} + H₂O_(I) + CO_{2(g)}

Acabou?

Experimento 1

Experimento 2

4

- Antes de realizar um experimento é importante prever o tipo e quantidade de resíduo que será gerado.
- Para o final do experimento, é preciso ter recipientes identificados com as diferentes categorias de resíduos que serão gerados.
- Evite frascos muito grandes.

Gerenciando os resíduos formados após um experimento

Resíduos devidamente separados e identificados podem ter diferentes destinos, como por exemplo:

- 1. Envio para tratamento por empresa especializada.
- 2. Descarte na pia, se for seguro ou permitido.
- 3. Armazenamento para reuso, se for seguro ou permitido.

6

SUBSTÂNCIAS QUE PODEM SER DESCARTADAS DIRETAMENTE NA PIA:

- Substâncias com características ácidas ou básicas (não contaminadas com produtos químicos perigosos); como por exemplo; HCl, H₂SO₄, HNO₃, NaOH, KOH, Ca(OH)₂ deverão ser neutralizados antes do descarte até pH entre 6 e 8.
- Alguns cátions (em concentrações baixas)
 Al³+, Ca²+, Fe²+, Fe³+, Mg²+, Na+,NH₄+
- Alguns ânions (em concentrações baixas)
 CO₃²⁻, Cl⁻, HSO₃⁻, NO₃⁻, PO₄³⁻, SO₄²⁻.

Como proceder no descarte de alguns ácido e bases.

- 1- Utilize o resíduo ácido para neutralizar resíduo básico.
- 3. Vá adicionando
 CUIDADOSAMENTE o
 resíduo ácido ao resíduo
 básico. Ao atingir pH entre 6
 e 8, a mistura pode ser
 descartada na pia.
- 2. Acompanhe o pH com papel indicador universal. voltar

Armazenamento para reuso

- TRATAMENTO DE RESÍDUOS CONTENDO <u>METAIS</u> PESADOS¹
- Alguns metais pesados podem ser precipitados na forma de hidróxidos.
- Resolução 430/2011 do CONAMA (Conselho Nacional do Meio Ambiente) admite uma concentração de 1mg cobre por litro no efluente a ser lançado em corpo hídrico

METAIS PESADOS

- "No dicionário de Ecologia e Ciências Ambientais (1998), metais pesados são aqueles metais com número atômicos de médio e altos, como o cobre, o cádmio, a prata, o arsênio, o cromo e o mercúrio, e que são tóxicos em concentrações relativamente baixas. Persistem no ambiente e podem se acumular em níveis que interrompem o crescimento das plantas e interferem na vida animal." (citado por Santana, 2008)
- Outras definições incluem todos os elementos tabela periódica com massa atômica entre 63 e 207 (Cobre a Chumbo).

ETIQUETA

- NÃO CONTRIBUA PARA AUMENTAR A QUANTIDADE DE RESÍDUOS PASSIVOS.
- SEMPRE ROTULE
 OS RECIPIENTES
 ONDE SÃO
 ARMAZENADOS
 RESÍDUOS OU
 NOVAS
 SOLUÇÕES.

- NOME (da solução ou reagente) :
- DATA (de aquisição ou preparação) :
- VALIDADE:
- RESPONSÁVEL:
- Informações
 importantes sobre o
 risco, perigo e
 condições de
 segurança em seu
 manuseio.

EXEMPLOS DE RESÍDUOS ATIVOS GERADOS EM ESCOLA PÚBLICA DE CAMPINAS

cloreto de cálcio, hidróxido de cobre, Sulfato de ferro, cloreto de magnésio e carbonato de cálcio, além de soluções ácidas e básicas.

ARMAZENAMENTO

O armazenamento de reagentes deve ser feito em local fresco, com iluminação e ventilação adequados, em frascos e temperatura compatíveis.

Algumas Dicas de armazenamento

- 1. Consultar tabelas de incompatibilidade, existentes na literatura.
- 2. Separar reagentes incompatíveis.
- 3. Armazenar reagentes afastados da luz solar direta.
- 4. Verificar condições das prateleiras e, havendo necessidade, realizar a troca de prateleiras condenadas.
- 5. Evitar excesso de peso;
- 6. Ordenar reagentes segundo a classe química;
- 7. Frascos maiores devem ser alocados na parte inferior do armário, nunca no alto;
- 8. Não dispor frascos de reagentes e de resíduos lado a lado.
- 9. Evitar excesso de estoque. As condições dos materiais estocados devem ser verificadas anualmente. Materiais que não estejam mais sendo utilizados devem ser descartados ou doados.

Exemplo de tabela de incompatibilidade

Grupo A	Grupo B
Ácidos	Bases
Agentes Oxidantes	Agentes Redutores
Cloratos	Amônia
Cromatos / Dicromatos	Carbono (Carvão)
Halogênios	Hidretos Metálicos
Nitratos / Ácido Nítrico	Compostos Orgânicos
Permanganatos	Enxofre
Perssulfatos	Fósforo
Percloratos	
Peróxidos	

Efeitos do grupo A com o grupo B Geração de calor e reação violenta.

Alguns Símbolos de Segurança

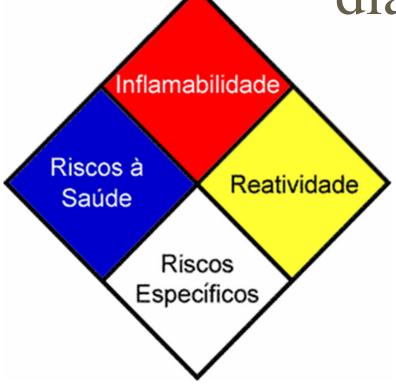
corrosivo

explosivo

Comburente

inflamável

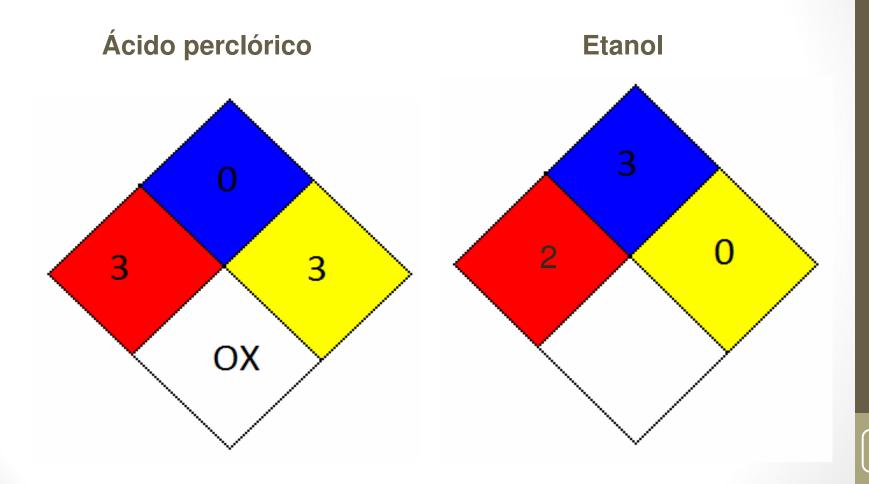
Tóxico



Irritante

Perigoso para o ambiente

Diamante de Hommel ou diamante do perigo



Os números necessários para o preenchimento do Diamante de Hommel encontram-se disponíveis em sites ou livros que contenha fichas FISPQ (Ficha de Informação de Segurança de Produto Químico).

Sobre seu preenchimento

- Riscos à Saúde
- 4 Substância Letal
 - 3 Substância Severamente Perigosa
 - 2 Substância Moderadamente Perigosa
 - 1 Substância Levemente Perigosa
 - 0 Substância Não Perigosa ou de Risco Mínimo
- Riscos Específicos
- OXY Oxidante Forte
 ACID Ácido Forte
 ALK Alcalino (Base) Forte
 COR Corrosivo
 W Não misture com água

EXEMPLOS

Referências:

JARDIM, Wilson de Figueiredo. **Gerenciamento de resíduos químicos em laboratórios de ensino e pesquisa.** Química Nova, Out 1998, vol 21, nº 5, p.671-673.

Normas de Gerenciamento de Resíduos Químicos do Instituto de Química da UNICAMP, disponível em: http://www.iqm.unicamp.br/. Acessado em: 26/07/2011.

Resolução **CONAMA 430/2011**, disponível em, http://www.mma.gov.br/. Acesso em : 26/07/2010.

SANTANA, Genilson Pereira. **Elemento-traço ou metal Pesado?**Disponível em: http://www.cq.ufam.edu.br/. Acessado em: 06 mar 2012.

Site da Universidade Federal de Viçosa, disponível em: http://www.drh.ufv.br/docs/gestao_residuos/incompatibilidade_qumica.pdf. Acessado em: 06 mar 2012.